On the Universal Approximability of Quantized ReLU Neural Networks

نویسندگان

  • Yukun Ding
  • Jinglan Liu
  • Yiyu Shi
چکیده

Compression is a key step to deploy large neural networks on resource-constrained platforms. As a popular compression technique, quantization constrains the number of distinct weight values and thus reducing the number of bits required to represent and store each weight. In this paper, we study the representation power of quantized neural networks. First, we prove the universal approximability of quantized ReLU networks. Then we provide upper bounds of storage size given the approximation error bound and the bit-width of weights for function-independent and functiondependent structures. To the best of the authors’ knowledge, this is the first work on the universal approximability as well as the associated storage size bound of quantized neural networks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Expressive Power of Neural Networks: A View from the Width

The expressive power of neural networks is important for understanding deep learning. Most existing works consider this problem from the view of the depth of a network. In this paper, we study how width affects the expressiveness of neural networks. Classical results state that depth-bounded (e.g. depth-2) networks with suitable activation functions are universal approximators. We show a univer...

متن کامل

Universal Function Approximation by Deep Neural Nets with Bounded Width and ReLU Activations

This article concerns the expressive power of depth in neural nets with ReLU activations and bounded width. We are particularly interested in the following questions: what is the minimal width wmin(d) so that ReLU nets of width wmin(d) (and arbitrary depth) can approximate any continuous function on the unit cube [0, 1] aribitrarily well? For ReLU nets near this minimal width, what can one say ...

متن کامل

Neural Network with Unbounded Activations is Universal Approximator

Abstract This paper presents an investigation of the approximation property of neural networks with unbounded activation functions, such as the rectified linear unit (ReLU), which is the new de-facto standard of deep learning. The ReLU network can be analyzed by the ridgelet transform with respect to Lizorkin distributions. By showing three reconstruction formulas by using the Fourier slice the...

متن کامل

Investigation of parametric rectified linear units for noise robust speech recognition

Convolutional neural networks with rectified linear unit (ReLU) have been successful in speech recognition and computer vision tasks. ReLU was proposed as a better match to biological neural activation functions compared to sigmoidal non-linearity function. However, ReLU has a disadvantage that the gradient is zero whenever the unit is not active or saturated. To alleviate the potential problem...

متن کامل

Identity Matters in Deep Learning

An emerging design principle in deep learning is that each layer of a deep artificial neural network should be able to easily express the identity transformation. This idea not only motivated various normalization techniques, such as batch normalization, but was also key to the immense success of residual networks. In this work, we put the principle of identity parameterization on a more solid ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1802.03646  شماره 

صفحات  -

تاریخ انتشار 2018